OrDB
Paper
  Data
Anticevic A, Murray JD, Barch DM (2015)
Bridging Levels of Understanding in Schizophrenia Through Computational Modeling
2015
Feb
9
Clinical Psychological Science
Abi-Dargham, A., Gil, R., Krystal, J., Baldwin, R. M., Seibyl, J. P., Bowers, M., . . . Laruelle, M. (1998). Increased striatal dopamine transmission in schizophrenia: Confirmation in a second cohort. American Journal of Psychiatry, 155, 761–767. Abi-Dargham, A., Kegeles, L. S., Zea-Ponce, Y., Mawlawi, O., Martinez, D., Mitropoulou, V., . . . Siever, L. J. (2004). Striatal amphetamine-induced dopamine release in patients with schizotypal personality disorder studied with single photon emission computed tomography and [123I]iodobenzamide. Biological Psychiatry, 55, 1001–1006. Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y., Gil, R., Kegeles, L. S., . . . Laruelle, M. (2000). Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proceedings of the National Academy of Sciences, USA, 97, 8104–8109. Abi-Dargham, A., van de Giessen, E., Slifstein, M., Kegeles, L. S., & Laruelle, M. (2009). Baseline and amphetamine-stimulated dopamine activity are related in drug-naive schizophrenic subjects. Biological Psychiatry, 65, 1091–1093. Amit, D. J., & Brunel, N. (1997). Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cerebral Cortex, 7, 237–252. Anticevic, A., Brumbaugh, M. S., Winkler, A. M., Lombardo, L. E., Barrett, J., Corlett, P. R., . . . Glahn, D. C. (2012). Global prefrontal and fronto-amygdala dysconnectivity in Bipolar I disorder with psychosis history. Biological Psychiatry, 73, 565–573. doi:doi: 10.1016/j.biopsych.2012.07.031 Anticevic, A., Cole, M. W., Murray, J. D., Corlett, P. R., Wang, X. J., & Krystal, J. H. (2012). The role of default network deactivation in cognition and disease. Trends in Cognitive Sciences, 16, 584–592. Anticevic, A., Cole, M. W., Repovs, G., Murray, J. D., Brumbaugh, M. S., Winkler, A. M., . . . Glahn, D. C. (2014). Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cerebral Cortex, 24, 3116–3130. Anticevic, A., Cole, M. W., Repovs, G., Savic, A., Driesen, N. R., Yang, G., . . . Krystal, J. H. (2013). Connectivity, pharmacology, and computation: Toward a mechanistic understanding of neural system dysfunction in schizophrenia. Frontiers in Psychiatry, 4(169). Retrieved from http://journal.frontiersin .org/Journal/10.3389/fpsyt.2013.00169/full Anticevic, A., Gancsos, M., Murray, J. D., Repovs, G., Driesen, N. R., Ennis, D. J., . . . Corlett, P. R. (2012). NMDA receptor function in large-scale anti-correlated neural systems with implications for cognition and schizophrenia. Proceedings of the National Academy of Sciences, USA, 109, 16720–16725. Anticevic, A., Repovs, G., & Barch, D. M. (2013). Working memory encoding and maintenance deficits in schizophrenia: Neural evidence for activation and deactivation abnormalities. Schizophrenia Bulletin, 39, 168–178. doi:10.1093/ schbul/sbr107 Anticevic, A., Repovs, G., Corlett, P. R., & Barch, D. M. (2011). Negative and non-emotional interference with visual working memory in schizophrenia. Biological Psychiatry, 70, 1159–1168. Anticevic, A., Savic, A., Repovs, G., Yang, G., McKay, D. R., Sprooten, E., . . . Glahn, D. C. (2014). Ventral anterior cingulate connectivity distinguished nonpsychotic bipolar illness from psychotic bipolar disorder and schizophrenia. Schizophrenia Bulletin. Advance online publication. doi:10.1093/schbul/sbu051 Anticevic, A., Yang, G., Savic, A., Murray, J. D., Cole, M. W., Repovs, G., . . . Glahn, D.C. (2014). Medio-dorsal and visual thalamic connectivity differ in schizophrenia and bipolar disorder with and without psychosis history. Schizophrenia Bulletin, 40, 1227–1243. Arnsten, A. F. (2011). Catecholamine influences on dorsolateral prefrontal cortical networks. Biological Psychiatry, 69, 89–99. Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450. Badcock, J. C, Badcock, D. R., Read, C., & Jablensky, A. (2008). Examining encoding imprecision in spatial working memory in schizophrenia. Schizophrenia Research, 100, 144–152. Barch, D. M. (2005). The cognitive neuroscience of schizophrenia. In T. Cannon & S. Mineka (Eds.), Annual review of clinical psychology (Vol. 1, pp. 321–353). Washington, DC: American Psychological Association. Barch, D. M., & Braver, T. S. (2007). Cognitive control in schizophrenia: Psychological and neural mechanisms. In R. W. Engle, G. Sedek, U. von Hecker, & A. M. McIntosh (Eds.), Cognitive limitations in aging and psychopathology (pp. 122–159). Cambridge, England: Cambridge University Press. Barch, D. M., Carter, C., Perlstein, W., Baird, J., Cohen, J., & Schooler, N. (1999). Increased Stroop facilitation effects in schizophrenia are not due to increased automatic spreading activation. Schizophrenia Research, 39, 51–64. Barch, D. M., & Ceaser, A. (2012). Cognition in schizophrenia: Core psychological and neural mechanisms. Trends in Cognitive Sciences, 16, 27–34. doi:10.1016/j.tics.2011.11.015 Barch, D. M., & Dowd, E. C. (2010). Goal representations and motivational drive in schizophrenia: The role of prefrontal- striatal interactions. Schizophrenia Bulletin, 36, 919–934. Benes, F. M., McSparren, J., Bird, E. D., SanGiovanni, J. P., & Vincent, S. L. (1991). Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Archives of General Psychiatry, 48, 996–1001. Bilder, R. M., Volavka, J., Lachman, H. M., & Grace, A. A. (2004). The catechol-O-methyltransferase polymorphism: Relations to the tonic-phasic dopamine hypothesis and neuropsychiatric phenotypes. Neuropsychopharmacology, 29, 1943–1961. Börgers, C., Epstein, S., & Kopell, N. J. (2008). Gamma oscillations mediate stimulus competition and attentional selection in a cortical network model. Proceedings of the National Academy of Sciences, USA, 105, 18023–18028. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624–652. Braver, T. S., Barch, D. M., & Cohen, J. D. (1999). Cognition and control in schizophrenia: A computational model of dopamine and prefrontal function. Biological Psychiatry, 46, 312–328. Braver, T. S., & Cohen, J. D. (1999). Dopamine, cognitive control, and schizophrenia: The gating model. Progress in Brain Research, 121, 327–349. Brunel, N., & Wang, X. J. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of Computational Neuroscience, 11, 63–85. Buzsáki, G., & Wang, X. J. (2012). Mechanisms of gamma oscillations. Annual Review of Neuroscience, 35, 203–225. Carter, J. R., & Neufeld, R. W. (1999). Cognitive processing of multidimensional stimuli in schizophrenia: Formal modeling of judgment speed and content. Journal of Abnormal Psychology, 108, 633–654. Cano-Colino, M., & Compte, A. (2012). A computational model for spatial working memory deficits in schizophrenia. Pharmacopsychiatry, 45(Suppl. 1), 49–56. Cohen, J. D., Barch, D. M., Carter, C., & Servan-Schreiber, D. (1999). Context-processing deficits in schizophrenia: Converging evidence from three theoretically motivated cognitive tasks. Journal of Abnormal Psychology, 108, 120–133. Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes: A parallel distributed processing account of the Stroop effect. Psychological Review, 97, 332–361. Cohen, J. D., & Servan-Schreiber, D. (1992). Context, cortex and dopamine: A connectionist approach to behavior and biology in schizophrenia. Psychological Review, 99, 45–77. Cohen, J. D., & Servan-Schreiber, D. (1993). A theory of dopamine function and cognitive deficits in schizophrenia. Schizophrenia Bulletin, 19, 85–104. Cohen, J. D., Servan-Schreiber, D., & McClelland, J. L. (1992). A parallel distributed processing approach to automaticity. American Journal of Psychology, 105, 239–269. Cohen, J. D., Targ, E., Servan-Schreiber, D., & Spiegel, D. (1992). The fabric of thought disorder: A cognitive neuroscience approach to disturbances in the processing of context in schizophrenia. In D. J. Stein & J. E. Young (Eds.), Cognitive science and clinical disorders (pp. 101–127). New York, NY: Academic Press. Cole, M. W., Anticevic, A., Repovs, G., & Barch, D. M. (2011). Variable global dysconnectivity and individual differences in schizophrenia. Biological Psychiatry, 70, 43–50. Compte, A., Brunel, N., Goldman-Rakic, P. S., & Wang, X. J. (2000). Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex, 10, 910–923. Corlett, P. R., Honey, G. D., Aitken, M. R., Dickinson, A., Shanks, D. R., Absalom, A. R., . . . Fletcher, P. C. (2006). Frontal responses during learning predict vulnerability to the psychotogenic effects of ketamine: Linking cognition, brain activity, and psychosis. Archives of General Psychiatry, 63, 611–621. doi:10.1001/archpsyc.63.6.611 Corlett, P. R., Honey, G. D., & Fletcher, P. C. (2007). From prediction error to psychosis: Ketamine as a pharmacological model of delusions. Journal of Psychopharmacology, 21, 238–252. Corlett, P. R., Honey, G. D., Krystal, J. H., & Fletcher, P. C. (2011). Glutamatergic model psychoses: Prediction error, learning, and inference. Neuropsychopharmacology, 36, 294–315. Cornblatt, B. A., Lenzenweger, M. F., & Erlenmeyer-Kimling, L. (1989). The Continuous Performance Test, Identical Pairs version: II. Contrasting attentional profiles in schizophrenic and depressed patients. Psychiatry Research, 29, 65–86. Cornblatt, B. A., Risch, N. J., Faris, G., Friedman, D., & Erlenmeyer-Kimling, L. (1988). The Continuous Performance Test, Identical Pairs version (CPT-IP): I. New findings about sustained attention in normal families. Psychiatry Research, 26, 223–238. Curtis, C. E., Rao, V. Y., & D`Esposito, M. (2004). Maintenance of spatial and motor codes during oculomotor delayed response tasks. Journal of Neuroscience, 24, 3944–3952. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., & Dolan, R. J. (2011). Model-based influences on humans` choices and striatal prediction errors. Neuron, 69, 1204–1215. doi:10.1016/j.neuron.2011.02.027 Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8, 1704–1711. Deco, G., Ponce-Alvarez, A., Mantini, D., Romani, G. L., Hagmann, P., & Corbetta, M. (2013). Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuations. Journal of Neuroscience, 33, 11239–11252. Deserno, L., Boehme, R., Heinz, A., & Schlagenhauf, F. (2013). Reinforcement learning and dopamine in schizophrenia: Dimensions of symptoms or specific features of a disease group? Frontiers in Psychiatry, 4(172). Retrieved from http:// journal.frontiersin.org/Journal/10.3389/fpsyt.2013.00172/full Dipoppa, M., & Gutkin, B. S. (2013). Flexible frequency control of cortical oscillations enables computations required for working memory. Proceedings of the National Academy of Sciences, USA, 110, 12828–12833. Dowd, E. C., & Barch, D. M. (2010). Anhedonia and emotional experience in schizophrenia: Neural and behavioral indicators. Biological Psychiatry, 67, 902–911. Driesen, N. R., McCarthy, G., Bhagwagar, Z., Bloch, M. H., Calhoun, V. D., D`Souza, D. C., . . . Krystal, J. H. (2013). Relationship of resting brain hyperconnectivity and schizophrenia- like symptoms produced by the NMDA receptor antagonist ketamine in humans. Molecular Psychiatry, 18, 1199–1204. doi:10.1038/mp.2012.194 Durstewitz, D., Kelc, M., & Gunturkun, O. (1999). A neurocomputational theory of the dopaminergic modulation of working memory functions. Journal of Neuroscience, 19, 2807–2822. Durstewitz, D., & Seamans, J. K. (2002). The computational role of dopamine D1 receptors in working memory. Neural Networks, 15, 561–572. Durstewitz, D., & Seamans, J. K. (2008). The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biological Psychiatry, 64, 739–749. doi:10.1016/j .biopsych.2008.05.015 Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of Neurophysiology, 83, 1733–1750. Edwards, B. G., Barch, D. M., & Braver, T. S. (2010). Improving prefrontal cortex function in schizophrenia through focused training of cognitive control. Frontiers in Human Neuroscience, 4(32). Retrieved from http://journal.frontiersin .org/Journal/10.3389/fnhum.2010.00032/full Feinberg, I. (1982). Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 17, 319–334. Fornito, A., Yoon, J., Zalesky, A., Bullmore, E. T., & Carter, C. S. (2011). General and specific functional connectivity disturbances in first-episode schizophrenia during cognitive control performance. Biological Psychiatry, 70, 64–72. Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62, 2296–2314. doi:10.1016/j.neuroimage .2011.12.090 Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17, 51–72. doi:10.1162/0898929052880093 Frank, M. J., & Claus, E. D. (2006). Anatomy of a decision: Striato-orbitofrontal interactions in reinforcement learning, decision making, and reversal. Psychological Review, 113, 300–326. Friston, K. J., & Frith, C. D. (1995). Schizophrenia: A disconnection syndrome? Clinical Neuroscience, 2, 1–9. Funahashi, S., Bruce, C. J., & Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey`s dorsolateral prefrontal cortex. Journal of Neurophysiology, 61, 331–349. Fusar-Poli, P., Borgwardt, S., Bechdolf, A., Addington, J., Riecher-Rössler, A., Schultze-Lutter, F., . . . Yung, A. (2013). The psychosis high-risk state: A comprehensive state-ofthe- art review. JAMA Psychiatry, 70, 107–120. Gold, J. M., Fuller, R. L., Robinson, B. M., McMahon, R. P., Braun, E. L., & Luck, S. J. (2006). Intact attentional control of working memory encoding in schizophrenia. Journal of Abnormal Psychology, 115, 658–673. Gold, J. M., Waltz, J. A., Matveeva, T. M., Kasanova, Z., Strauss, G. P., Herbener, E. S., . . . Frank, M. J. (2012). Negative symptoms and the failure to represent the expected reward value of actions: Behavioral and computational modeling evidence. Archives of General Psychiatry, 69, 129–138. doi:10.1001/archgenpsychiatry.2011.1269 Gold, J. M., Waltz, J. A., Prentice, K. J., Morris, S. E., & Heerey, E. A. (2008). Reward processing in schizophrenia: A deficit in the representation of value. Schizophrenia Bulletin, 34, 835–847. González-Burgos, G., & Lewis, D. A. (2012). NMDA receptor hypofunction, parvalbumin-positive neurons and cortical gamma oscillations in schizophrenia. Schizophrenia Bulletin, 38, 950–957. Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia. Neuroscience, 41, 1–24. Gradin, V. B., Kumar, P., Waiter, G., Ahearn, T., Stickle, C., Milders, M., . . . Steele, J. D. (2011). Expected value and prediction error abnormalities in depression and schizophrenia. Brain, 134, 1751–1764. doi:10.1093/brain/awr059 Greene, R. (2001). Circuit analysis of NMDAR hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia. Hippocampus, 11, 569–577. doi:10.1002/hipo.1072 Guillin, O., Abi-Dargham, A., & Laruelle, M. (2007). Neurobiology of dopamine in schizophrenia. International Review of Neurobiology, 78, 1–39. Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, K. S., Myers, C. R., & Sethna, J. P. (2007). Universally sloppy parameter sensitivities in systems biology models. PLoS Computational Biology, 3(10), e189. Retrieved from http://www.ploscompbiol.org/article/ info%3Adoi%2F10.1371%2Fjournal.pcbi.0030189 Hahn, B., Robinson, B. M., Kaiser, S. T., Harvey, A. N., Beck, V. M., Leonard, C. J., . . . Gold, J. M. (2010). Failure of schizophrenia patients to overcome salient distractors during working memory encoding. Biological Psychiatry, 68, 603–609. Hazy, T. E., Frank, M. J., & O`Reilly, R. C. (2006). Banishing the homunculus: Making working memory work. Neuroscience, 139, 105–118. doi:10.1016/j.neuroscience.2005.04.067 Hazy, T. E., Frank, M. J., & O`Reilly, R. C. (2007). Towards an executive without a homunculus: Computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 1601–1613. Hoffman, R. E. (1997). Neural network simulations, cortical connectivity, and schizophrenic psychosis. M.D. Computing: Computers in Medical Practice, 14, 200–208. Hoffman, R. E., Boutros, N. N., Berman, R. M., Roessler, E., Belger, A., Krystal, J. H., & Charney, D. S. (1999). Transcranial magnetic stimulation of left temporoparietal cortex in three patients reporting hallucinated “voices.” Biological Psychiatry, 46, 130–132. Hoffman, R. E., & Dobscha, S. K. (1989). Cortical pruning and the development of schizophrenia: A computer model. Schizophrenia Bulletin, 15, 477–489. Hoffman, R. E., Grasemann, U., Gueorguieva, R., Quinlan, D., Lane, D., & Miikkulainen, R. (2011). Using computational patients to evaluate illness mechanisms in schizophrenia. Biological Psychiatry, 69, 997–1005. doi:10.1016/j.biopsych .2010.12.036 Hoffman, R. E., & McGlashan, T. H. (1997). Synaptic elimination, neurodevelopment, and the mechanism of hallucinated “voices” in schizophrenia. American Journal of Psychiatry, 154, 1683–1689. Hoffman, R. E., & McGlashan, T. H. (2001). Neural network models of schizophrenia. Neuroscientist, 7, 441–454. Holmes, A. J., MacDonald, A., III, Carter, C. S., Barch, D. M., Andrew Stenger, V., & Cohen, J. D. (2005). Prefrontal functioning during context processing in schizophrenia and major depression: An event-related fMRI study. Schizophrenia Research, 76, 199–206. Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709. Holroyd, C. B., & Yeung, N. (2012). Motivation of extended behaviors by anterior cingulate cortex. Trends in Cognitive Sciences, 16, 122–128. doi:10.1016/j.tics.2011.12.008 Homayoun, H., & Moghaddam, B. (2007). NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. Journal of Neuroscience, 27, 11496–11500. doi:10.1523/ JNEUROSCI.2213-07.2007 Honey, G., & Bullmore, E. (2004). Human pharmacological MRI. Trends in Pharmacological Sciences, 25, 366–374. doi:10.1016/j.tips.2004.05.009 Howes, O. D., Kambeitz, J., Kim, E., Stahl, D., Slifstein, M., Abi-Dargham, A., & Kapur, S. (2012). The nature of dopamine dysfunction in schizophrenia and what this means for treatment: Meta-analysis of imaging studies. Archives of General Psychiatry, 69, 776–786. doi:10.1001/ archgenpsychiatry.2012.169 Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Moore, K. S. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193–224. Kapur, S. (2003). Psychosis as a state of aberrant salience: A framework linking biology, phenomenology, and pharmacology in schizophrenia. American Journal of Psychiatry, 160, 13–23. Kapur, S., Mizrahi, R., & Li, M. (2005). From dopamine to salience to psychosis—Linking biology, pharmacology and phenomenology of psychosis. Schizophrenia Research, 79, 59–68. Karlsgodt, K. H., Sanz, J., van Erp, T. G., Bearden, C. E., Nuechterlein, K. H., & Cannon, T. D. (2009). Re-evaluating dorsolateral prefrontal cortex activation during working memory in schizophrenia. Schizophrenia Research, 108, 143–150. Kegeles, L. S., Abi-Dargham, A., Frankle, W. G., Gil, R., Cooper, T. B., Slifstein, M., . . . Laruelle, M. (2010). Increased synaptic dopamine function in associative regions of the striatum in schizophrenia. Archives of General Psychiatry, 67, 231–239. Kömek, K., Bard Ermentrout, G., Walker, C. P., & Cho, R. Y. (2012). Dopamine and gamma band synchrony in schizophrenia— Insights from computational and empirical studies. European Journal of Neuroscience, 36, 2146–2155. Kotermanski, S. E., & Johnson, J. W. (2009). Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer`s drug memantine. Journal of Neuroscience, 29, 2774–2779. Krystal, J. H., Anand, A., & Moghaddam, B. (2002). Effects of NMDA receptor antagonists: Implications for the pathophysiology of schizophrenia. Archives of General Psychiatry, 59, 663–664. Krystal, J. H., D`Souza, D. C., Mathalon, D. H., Perry, E., Belger, A., & Hoffman, R. (2003). NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: Toward a paradigm shift in medication development. Psychopharmacology, 169, 215–233. Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., . . . Charney, D. S. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of General Psychiatry, 51, 199–214. Krystal, J. H., & Moghaddam, B. (2011). Contributions of glutamate and GABA systems to the neurobiology and treatment of schizophrenia. In P. J. Weinberger & P. J. Harrison (Eds.), Schizophrenia (3rd ed., pp. 433–461). Oxford, England: Blackwell Science. Kwapil, T. R., Hegley, D. C., Chapman, L. J., & Chapman, J. P. (1990). Facilitation of word recognition by semantic priming in schizophrenia. Journal of Abnormal Psychology, 3, 215–221. Laruelle, M., Abi-Dargham, A., Gil, R., Kegeles, L., & Innis, R. (1999). Increased dopamine transmission in schizophrenia: Relationship to illness phases. Biological Psychiatry, 46, 56–72. Laruelle, M., D`Souza, G. D., Zoghbi, S., Baldwin, R., Charney, D., & Innis, R. (1996). SPECT measurement of dopamine synaptic concentration in the resting state. Journal of Nuclear Medicine, 37(5), 32. Lee, D. (2013). Decision making: From neuroscience to psychiatry. Neuron, 78, 233–248. Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: A meta-analysis. Journal of Abnormal Psychology, 114, 599–611. Lencz, T., Bilder, R. M., Turkel, E., Goldman, R. S., Robinson, D., Kane, J. M., & Lieverman, J. A. (2003). Impairments in perceptual competency and maintenance on a visual delayed match-to-sample test in first-episode schizophrenia. Archives of General Psychiatry, 60, 238–243. Lewis, D. A., Curley, A. A., Glausier, J. R., & Volk, D. W. (2012). Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends in Neurosciences, 35, 57–67. Lewis, D. A., & González-Burgos, G. (2008). Neuroplasticity of neocortical circuits in schizophrenia. Neuropsychopharmacology, 33, 141–165. Lewis, D. A., Hashimoto, T., & Volk, D. W. (2005). Cortical inhibitory neurons and schizophrenia. Nature Reviews Neuroscience, 6, 312–324. Lewis, D. A., & Moghaddam, B. (2006). Cognitive dysfunction in schizophrenia: Convergence of gamma-aminobutyric acid and glutamate alterations. Archives of Neurology, 63, 1372–1376. Lewis, D. A., Volk, D. W., & Hashimoto, T. (2004). Selective alterations in prefrontal cortical GABA neurotransmission in schizophrenia: A novel target for the treatment of working memory dysfunction. Psychopharmacology, 174, 143–150. doi:10.1007/s00213-003-1673-x Lisman, J. (2012). Excitation, inhibition, local oscillations, or large-scale loops: What causes the symptoms of schizophrenia? Current Opinion in Neurobiology, 22, 537–544. doi: 10.1016/j.conb.2011.10.018 Lisman, J. E., Pi, H. J., Zhang, Y., & Otmakhova, N. A. (2010). A thalamo-hippocampal-ventral tegmental area loop may produce the positive feedback that underlies the psychotic break in schizophrenia. Biological Psychiatry, 68, 17–24. Loh, M., Rolls, E. T., & Deco, G. (2007). A dynamical systems hypothesis of schizophrenia. PLoS Computational Biology, 3(11), e228. Retrieved from http://www.ploscompbiol.org/ article/info%3Adoi%2F10.1371%2Fjournal.pcbi.0030228 MacDonald, A., Carter, C. S., Kerns, J. G., Ursu, S., Barch, D. M., Holmes, A. J., . . . Cohen, J. D. (2005). Specificity of prefrontal dysfunction and context processing deficts to schizophrenia in a never medicated first-episode psychotic sample. American Journal of Psychiatry, 162, 475–484. Maia, T.V., & Frank, M. J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14, 154–162. doi:10.1038/nn.2723 Marin, O. (2012). Interneuron dysfunction in psychiatric disorders. Nature Reviews Neuroscience, 13, 107–120. Marsman, A., van den Heuvel, M. P., Klomp, D. W. J., Kahn, R. S., Luijten, P. R., & Hulshoff Pol, H. E. (2013). Glutamate in schizophrenia: A focused review and meta-analysis of 1H-MRS studies. Schizophrenia Bulletin, 39, 120–129. McClelland, J. L. (1991). Stochastic interactive processes and the effect of context on perception. Cognitive Psychology, 23, 1–44. McClelland, J. L., & Elman, J. L. (1986). The TRACE model of speech perception. Cognitive Psychology, 18, 1–86. McClelland, J., & Rumelhart, D. E. (1986). Parallel distributed processing: Explorations in the microstructure of cognition— Vol 2. Psychological and biological models. Cambridge, MA: MIT Press. McClelland, J. L., St. John, M., & Taraban, R. (1989). Sentence comprehension: A parallel distributed processing approach. Language and Cognitive Processes, 4, 287–335. Miikkulainen, R., & Dyer, M. G. (1991). Natural language processing with modular PDP networks and distributed lexicon. Cognitive Science, 15, 343–399. Minzenberg, M. J., Laird, A. R., Thelen, S., Carter, C. S., & Glahn, D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66, 811–822. Moghaddam, B., & Adams, B. W. (1998). Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science, 281, 1349–1352. Morris, S. E., Heerey, E. A., Gold, J. M., & Holroyd, C. B. (2008). Learning-related changes in brain activity following errors and performance feedback in schizophrenia. Schizophrenia Research, 99, 274–285. Morris, S. E., Holroyd, C. B., Mann-Wrobel, M. C., & Gold, J. M. (2011). Dissociation of response and feedback negativity in schizophrenia: Electrophysiological and computational evidence for a deficit in the representation of value. Frontiers in Human Neuroscience, 5(123). Retrieved from http://journal .frontiersin.org/Journal/10.3389/fnhum.2011.00123/full Murray, C. J. L., & Lopez, A. D., Harvard School of Public Health, World Health Organization, & World Bank. (1996). The global burden of disease: A comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020. Cambridge, MA: Harvard School of Public Health. Murray, G. K., Corlett, P. R., Clark, L., Pessiglione, M., Blackwell, A. D., Honey, G., . . . Fletcher, P. C. (2008). Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Molecular Psychiatry, 13, 267–276. Murray, J. D., Anticevic, A., Corlett, P. R., Gancsos, M., Krystal, J. H., & Wang, X.-J. (2014). Linking microcircuit dysfunction to cognitive impairment: Effects of disinhibition associated with schizophrenia in a cortical working memory model. Cerebral Cortex, 24, 859–872. Nakazawa, K., Zsiros, V., Jiang, Z., Nakao, K., Kolata, S., Zhang, S., & Belforte, J. E. (2012). GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology, 62, 1574-1583. Neymotin, S. A., Lazarewicz, M. T., Sherif, M., Contreras, D., Finkel, L. H., & Lytton, W. W. (2011). Ketamine disrupts ? modulation of ? in a computer model of hippocampus. Journal of Neuroscience, 31, 11733–11743. O`Reilly, R. C. (1996). Biologically plausible error-driven learning using local activation differences: The generalized recirculation algorithm. Neural Computation, 8, 895–938. Park, S., & Holzman, P. S. (1992). Schizophrenics show spatial working memory deficits. Archives of General Psychiatry, 49, 975–982. Perlstein, W. M., Dixit, N. K., Carter, C. S., Noll, D. C., & Cohen, J. D. (2003). Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biological Psychiatry, 53, 25–38. Plaut, D. C. (1996). Relearning after damage in connectionist networks: Toward a theory of rehabilitation. Brain and Language, 52, 25–82. Plaut, D. C., & Farah, M. J. (1990). Visual object representation: Interpreting neurophysiological data within a computational framework. Journal of Cognitive Neuroscience, 2, 320–343. Plaut, D. C., McClelland, J. L., Seidenberg, M. S., & Patterson, K. (1996). Understanding normal and impaired word reading: Computational principles in quasi-regular domains. Psychological Review, 103, 56–115. Plaut, D. C., & Shallice, T. (1993). Deep dyslexia: A case study of connectionist neuropsychology. Cognitive Neuropsychology, 10, 377–500. Qi, X. L., Katsuki, F., Meyer, T., Rawley, J. B., Zhou, X., Douglas, K. L., & Constantinidis, C. (2010). Comparison of neural activity related to working memory in primate dorsolateral prefrontal and posterior parietal cortex. Frontiers in Systems Neuroscience, 4(12). Retrieved from http://journal .frontiersin.org/Journal/10.3389/fnsys.2010.00012/full Rao, S. G., Williams, G. V., & Goldman-Rakic, P. S. (2000). Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by working memory. Journal of Neuroscience, 20, 485–494. Repovs, G., & Barch, D. M. (2012). Working memory related brain network connectivity in individuals with schizophrenia and their siblings. Frontiers in Human Neuroscience, 6(137). Retrieved from http://journal.frontiersin.org/ Journal/10.3389/fnhum.2012.00137/full Repovs, G., Csernansky, J. G., & Barch, D. M. (2011). Brain network connectivity in individuals with schizophrenia and their siblings. Biological Psychiatry, 15, 967–973. Rotaru, D. C., Yoshino, H., Lewis, D. A., Ermentrout, G. B., & González-Burgos, G. (2011). Glutamate receptor subtypes mediating synaptic activation of prefrontal cortex neurons: Relevance for schizophrenia. Journal of Neuroscience, 31, 142–156. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by backpropogating errors. Nature, 323, 533–536. Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: Explorations in the microstructure of cognition— Vol. 1. Foundations. Cambridge, MA: MIT Press. Samartzis, L., Dima, D., Fusar-Poli, P., & Kyriakopoulos, M. (2014). White matter alterations in early stages of schizophrenia: A systematic review of diffusion tensor imaging studies. Journal of Neuroimaging, 24, 101–110. Schlagenhauf, F., Huys, Q. J., Deserno, L., Rapp, M. A., Beck, A., Heinze, H. J., . . . Heinz, A. (2014). Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. NeuroImage, 89, 171–180. doi:10.1016/j.neuroimage .2013.11.034 Seamans, J. K., & Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Progress in Neurobiology, 74, 1–58. Servan-Schreiber, D., Cohen, J. D., & Steingard, S. (1996). Schizophrenic deficits in the processing of context: A test of a theoretical model. Archives of General Psychiatry, 53, 1105–1113. Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4, 569–579. Siekmeier, P. J., & Hoffman, R. E. (2002). Enhanced semantic priming in schizophrenia: A computer model based on excessive pruning of local connections in association cortex. British Journal of Psychiatry, 180, 345–350. Silbersweig, D. A., Stern, E., Frith, C., Cahill, C., Holmes, A., Grootoonk, S., . . . Frackowiak, R. S. J. (1995). A functional neuroanatomy of hallucinations in schizophrenia. Nature, 378, 176–179. Simen, A. A., DiLeone, R., & Arnsten, A. F. (2009). Primate models of schizophrenia: Future possibilities. Progress in Brain Research, 179, 117–125. Snitz, B. E., MacDonald, A., III, Cohen, J. D., Cho, R. Y., Becker, T., & Carter, C. S. (2005). Lateral and medial hypofrontality in first-episode schizophrenia: Functional activity in a medication- naive state and effects of short-term atypical antipsychotic treatment. American Journal of Psychiatry, 162, 2322–2329. Spencer, K. M. (2009). The functional consequences of cortical circuit abnormalities on gamma oscillations in schizophrenia: Insights from computational modeling. Frontiers in Human Neuroscience, 3(33). Retrieved from http://journal .frontiersin.org/Journal/10.3389/neuro.09.033.2009/full Stephan, K. E., Baldeweg, T., & Friston, K. J. (2006). Synaptic plasticity and dysconnection in schizophrenia. Biological Psychiatry, 59, 929–939. Uhlhaas, P. J. (2013). Dysconnectivity, large-scale networks and neuronal dynamics in schizophrenia. Current Opinion in Neurobiology, 23, 283–290. Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience, 11, 100–113. Verma, A., & Moghaddam, B. (1996). NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: Modulation by dopamine. Journal of Neuroscience, 16, 373–379. Vierling-Claassen, D., Siekmeier, P. J., Stufflebeam, S., & Kopell, N. (2008). Modeling GABA alterations in schizophrenia: A link between impaired inhibition and altered gamma and beta range auditory entrainment. Journal of Neurophysiology, 99, 2656–2671. Volman, V., Behrens, M. M., & Sejnowski, T. J. (2011). Downregulation of parvalbumin at cortical gaba synapses reduces network gamma oscillatory activity. Journal of Neuroscience, 31, 18137–18148. Walker, E., Kestler, L., Bollini, A., & Hochman, K. M. (2004). Schizophrenia: Etiology and course. Annual Review of Psychology, 55, 401–430. Wallis, J. D. (2007). Orbitofrontal cortex and its contribution to decision-making. Annual Review of Neuroscience, 30, 31–56. Waltz, J. A., Frank, M. J., Robinson, B. M., & Gold, J. M. (2007). Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatalcortical dysfunction. Biological Psychiatry, 62, 756–764. Waltz, J. A., & Gold, J. M. (2007). Probabilistic reversal learning impairments in schizophrenia: Further evidence of orbitofrontal dysfunction. Schizophrenia Research, 93, 296–303. Waltz, J. A., Schweitzer, J. B., Gold, J. M., Kurup, P. K., Ross, T. J., Salmeron, B. J., . . . Stein, E. A. (2009). Patients with schizophrenia have a reduced neural response to both unpredictable and predictable primary reinforcers. Neuropsychopharmacology, 34, 1567–1577. Wang, M., Yang, Y., Wang, C. J., Gamo, N. J., Jin, L. E., Mazer, J. A., . . . Arnsten, A. F. (2013). NMDA receptors subserve persistent neuronal firing during working memory in dorsolateral prefrontal cortex. Neuron, 77, 736–749. Wang, X.-J. (1999). Synaptic basis of cortical persistent activity: The importance of NMDA receptors to working memory. Journal of Neuroscience, 19, 9587–9603. Wang, X.-J. (2001). Synaptic reverberation underlying mnemonic persistent activity. Trends in Neurosciences, 24, 455–463. Wang, X.-J. (2008). Decision making in recurrent neuronal circuits. Neuron, 60, 215–234. Wang, X.-J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiological Reviews, 90, 1195–1268. Woodward, N. D., Karbasforoushan, H., & Heckers, S. (2012). Thalamocortical dysconnectivity in schizophrenia. American Journal of Psychiatry, 169, 1092–1099. Wunderlich, K., Rangel, A., & O`Doherty, J. P. (2009). Neural computations underlying action-based decision making in the human brain. Proceedings of the National Academy of Sciences, USA, 106, 17199–17204. Yang, G. J., Murray, J. D., Repovs, G., Cole, M. W., Savic, A., Glasser, M. F., . . . Anticevic, A. (2014). Altered global brain signal in schizophrenia. Proceedings of the National Academy of Sciences, USA, 111, 7438–7443. Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F., Davidson, T. J., O`Shea, D. J., . . . Deisseroth, K. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 477, 171–178. Yoon, J. H., Minzenberg, M. J., Ursu, S., Ryan Walter, B. S., Wendelken, C., Ragland, J. D., & Carter, C. S. (2008). Association of dorsolateral prefrontal cortex dysfunction with disrupted coordinated brain activity in schizophrenia: Relationship with impaired cognition, behavioral disorganization, and global function. American Journal of Psychiatry, 165, 1006–1014.
M
Other categories referring to Anticevic A, Murray JD, Barch DM (2015)
Revisions: 3
Last Time: 2/10/2015 3:19:00 PM
Reviewer: Tom Morse - MoldelDB admin
Owner: Tom Morse - MoldelDB admin