1. Hiroi N, Fienberg AA, Haile CN, Alburges M, Hanson GR, et al. (1999)
Neuronal and behavioural abnormalities in striatal function in DARPP-32-
mutant mice. Eur J Neurosci 11: 1114–1118.
2. Willuhn I, Steiner H (2008) Motor-skill learning in a novel running-wheel task
is dependent on D1 dopamine receptors in the striatum. Neuroscience 153:
249–258.
3. Yin HH, Ostlund SB, Knowlton BJ, Balleine BW (2005) The role of the
dorsomedial striatum in instrumental conditioning. Eur J Neurosci 22:
513–523.
4. Cromwell HC, Hassani OK, Schultz W (2005) Relative reward processing in
primate striatum. Exp Brain Res 162: 520–525.
5. Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct
and indirect pathway medium-sized spiny neurons in mouse striatum.
J Neurosci 30: 14610–14618.
6. Bayer HM, Glimcher PW (2005) Midbrain dopamine neurons encode a
quantitative reward prediction error signal. Neuron 47: 129–141.
7. Calabresi P, Gubellini P, Centonze D, Picconi B, Bernardi G, et al. (2000)
Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal
long-term depression and long-term potentiation, opposing forms of synaptic
plasticity. J Neuroscience 20: 8443–8451.
8. Pawlak V, Kerr JN (2008) Dopamine receptor activation is required for
corticostriatal spike-timing-dependent plasticity. J Neurosci 28: 2435–2446.
9. Mendez I, Vinuela A, Astradsson A, Mukhida K, Hallett P, et al. (2008)
Dopamine neurons implanted into people with Parkinson’s disease survive
without pathology for 14 years. Nat Med 14: 507–509.
10. Heyser CJ, Fienberg AA, Greengard P, Gold LH (2000) DARPP-32 knockout
mice exhibit impaired reversal learning in a discriminated operant task. Brain
Res 867: 122–130.
11. Lee HK, Barbarosie M, Kameyama K, Bear MF, Huganir RL (2000)
Regulation of distinct AMPA receptor phosphorylation sites during bidirectional
synaptic plasticity. Nature 405: 955–959.
12. Govindarajan A, Israely I, Huang SY, Tonegawa S (2011) The dendritic
branch is the preferred integrative unit for protein synthesis-dependent LTP.
Neuron 69: 132–146.
13. Harvey CD, Svoboda K (2007) Locally dynamic synaptic learning rules in
pyramidal neuron dendrites. Nature 450: 1195–1200.
14. Singla S, Kreitzer AC, Malenka RC (2007) Mechanisms for synapse specificity
during striatal long-term depression. J Neurosci 27: 5260–5264.
15. Bloodgood BL, Sabatini BL (2005) Neuronal activity regulates diffusion across
the neck of dendritic spines. Science 310: 866–869.
16. Yuste R, Majewska A, Holthoff K (2000) From form to function: calcium
compartmentalization in dendritic spines. Nat Neurosci 3: 653–659.
17. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev
Mol Cell Biol 7: 165–176.
18. Zaccolo M (2006) Phosphodiesterases and compartmentalized cAMP signalling
in the heart. Eur J Cell Biol 85: 693–697.
19. Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space
and time. Nat Rev Mol Cell Biol 5: 959–970.
20. Glantz SB, Amat JA, Rubin CS (1992) cAMP signaling in neurons: patterns of
neuronal expression and intracellular localization for a novel protein, AKAP
150, that anchors the regulatory subunit of cAMP-dependent protein kinase II
beta. Mol Biol Cell 3: 1215–1228.
21. Ostroveanu A, Van der Zee EA, Dolga AM, Luiten PG, Eisel UL, et al. (2007)
A-kinase anchoring protein 150 in the mouse brain is concentrated in areas
involved in learning and memory. Brain Res 1145: 97–107.
22. Dessauer CW (2009) Adenylyl cyclase–A-kinase anchoring protein complexes:
the next dimension in cAMP signaling. Mol Pharmacol 76: 935–941.
23. Cantrell AR, Tibbs VC, Westenbroek RE, Scheuer T, Catterall WA (1999)
Dopaminergic modulation of voltage-gated Na+ current in rat hippocampal
neurons requires anchoring of cAMP-dependent protein kinase. J Neurosci 19:
RC21.
24. Efendiev R, Samelson BK, Nguyen BT, Phatarpekar PV, Baameur F, et al.
(2010) AKAP79 interacts with multiple adenylyl cyclase (AC) isoforms and
scaffolds AC5 and -6 to alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate
(AMPA) receptors. J Biol Chem 285: 14450–14458.
25. Nie T, McDonough CB, Huang T, Nguyen PV, Abel T (2007) Genetic
disruption of protein kinase A anchoring reveals a role for compartmentalized
kinase signaling in theta-burst long-term potentiation and spatial memory.
J Neurosci 27: 10278–10288.
26. Evans RC, Blackwell KT (2010) The role of PKA anchoring in striatal synaptic
plasticity. Soc Neurosci Abstract Viewer/Itinerary Planner 452.17.
27. Lindskog M, Kim M, Wikstrom MA, Blackwell KT, Kotaleski JH (2006)
Transient calcium and dopamine increase PKA activity and DARPP-32
phosphorylation. PLoS Comput Biol 2: e119.
28. Fernandez E, Schiappa R, Girault JA, Le Novere N (2006) DARPP-32 is a
robust integrator of dopamine and glutamate signals. PLoS Comput Biol 2:
e176.
29. Nakano T, Doi T, Yoshimoto J, Doya K (2010) A kinetic model of dopamineand
calcium-dependent striatal synaptic plasticity. PLoS Comput Biol 6:
e1000670.
30. Herve D, Levi-Strauss M, Marey-Semper I, Verney C, Tassin JP, et al. (1993)
G(olf) and Gs in rat basal ganglia: possible involvement of G(olf) in the coupling
of dopamine D1 receptor with adenylyl cyclase. J Neurosci 13: 2237–2248.
31. Zhuang X, Belluscio L, Hen R (2000) GOLFalpha Mediates Dopamine D1
Receptor Signaling. J Neuroscience 20: RC91.
32. Iwamoto T, Okumura S, Iwatsubo K, Kawabe J, Ohtsu K, et al. (2003) Motor
dysfunction in type 5 adenylyl cyclase-null mice. J Biol Chem 278:
16936–16940.
33. Zawadzki KM, Taylor SS (2004) cAMP-dependent protein kinase regulatory
subunit type IIbeta: active site mutations define an isoform-specific network for
allosteric signaling by cAMP. J Biol Chem 279: 7029–7036.
34. Johnson DA, Leathers VL, Martinez AM, Walsh DA, Fletcher WH (1993)
Fluorescence resonance energy transfer within a heterochromatic cAMPdependent
protein kinase holoenzyme under equilibrium conditions: new
insights into the conformational changes that result in cAMP-dependent
activation. Biochemistry 32: 6402–6410.
35. Roche KW, O’Brien RJ, Mammen AL, Bernhardt J, Huganir RL (1996)
Characterization of multiple phosphorylation sites on the AMPA receptor
GluR1 subunit. Neuron 16: 1179–1188.
36. Fujishige K, Kotera J, Omori K (1999) Striatum- and testis-specific
phosphodiesterase PDE10A isolation and characterization of a rat PDE10A.
Eur J Biochem 266: 1118–1127.
37. Nishi A, Kuroiwa M, Miller DB, O’Callaghan JP, Bateup HS, et al. (2008)
Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling
in the striatum. J Neurosci 28: 10460–10471.
38. MacKenzie SJ, Baillie GS, McPhee I, MacKenzie C, Seamons R, et al. (2002)
Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase
A-mediated phosphorylation of a single serine residue in Upstream Conserved
Region 1 (UCR1). Br J Pharmacol 136: 421–433.
39. Hemmings HC, Jr., Greengard P, Tung HY, Cohen P (1984) DARPP-32, a
dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein
phosphatase-1. Nature 310: 503–505.
40. Bibb JA, Snyder GL, Nishi A, Yan Z, Meijer L, et al. (1999) Phosphorylation of
DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 402:
669–671.
41. Guillou JL, Nakata H, Cooper DM (1999) Inhibition by calcium of mammalian
adenylyl cyclases. J Biol Chem 274: 35539–35545.
42. Gaertner TR, Putkey JA, Waxham MN (2004) RC3/Neurogranin and Ca2+/
calmodulin-dependent protein kinase II produce opposing effects on the affinity
of calmodulin for calcium. J Biol Chem 279: 39374–39382.
43. Faas GC, Raghavachari S, Lisman JE, Mody I (2011) Calmodulin as a direct
detector of Ca(2+) signals. Nat Neurosci 14: 301–304.
44. Quintana AR, Wang D, Forbes JE, Waxham MN (2005) Kinetics of
calmodulin binding to calcineurin. Biochem Biophys Res Commun 334:
674–680.
45. De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the
frequency of Ca2+ oscillations. Science 279: 227–230.
46. Hemmings HC, Jr., Nairn AC, Elliott JI, Greengard P (1990) Synthetic peptide
analogs of DARPP-32 (Mr 32,000 dopamine- and cAMP-regulated phosphoprotein),
an inhibitor of protein phosphatase-1. Phosphorylation, dephosphorylation,
and inhibitory activity. J Biol Chem 265: 20369–20376.
47. Mammen AL, Kameyama K, Roche KW, Huganir RL (1997) Phosphorylation
of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor
GluR1 subunit by calcium/calmodulin-dependent kinase II. J Biol Chem
272: 32528–32533.
48. Snyder GL, Allen PB, Fienberg AA, Valle CG, Huganir RL, et al. (2000)
Regulation of phosphorylation of the GluR1 AMPA receptor in the
neostriatum by dopamine and psychostimulants in vivo. J Neurosci 20:
4480–4488.
49. Parent A, Fortin M, Cote PY, Cicchetti F (1996) Calcium-binding proteins in
primate basal ganglia. Neurosci Res 25: 309–334.
50. Schmidt H, Kunerth S, Wilms C, Strotmann R, Eilers J (2007) Spino-dendritic
cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding
proteins. J Physiol 581: 619–629.
51. Lorincz A, Rozsa B, Katona G, Vizi ES, Tamas G (2007) Differential
distribution of NCX1 contributes to spine-dendrite compartmentalization in
CA1 pyramidal cells. Proc Natl Acad Sci U S A 104: 1033–1038.
52. Gall D, Gromada J, Susa I, Rorsman P, Herchuelz A, et al. (1999) Significance
of Na/Ca exchange for Ca2+
buffering and electrical activity in mouse
pancreatic beta-cells. Biophys J 76: 2018–2028.
53. Sedova M, Blatter LA (1999) Dynamic regulation of [Ca2+]i by plasma
membrane Ca(2+)-ATPase and Na+/Ca2+ exchange during capacitative Ca2+
entry in bovine vascular endothelial cells. Cell Calcium 25: 333–343.
54. Ahn JH, McAvoy T, Rakhilin SV, Nishi A, Greengard P, et al. (2007) Protein
kinase A activates protein phosphatase 2A by phosphorylation of the B56delta
subunit. Proc Natl Acad Sci U S A 104: 2979–2984.
55. Ahn JH, Sung JY, McAvoy T, Nishi A, Janssens V, et al. (2007) The B0/PR72
subunit mediates Ca2+-dependent dephosphorylation of DARPP-32 by protein
phosphatase 2A. Proc Natl Acad Sci U S A 104: 9876–9881.
56. Nishi A, Bibb JA, Matsuyama S, Hamada M, Higashi H, et al. (2002)
Regulation of DARPP-32 dephosphorylation at PKA- and Cdk5-sites by
NMDA and AMPA receptors: distinct roles of calcineurin and protein
phosphatase-2A. J Neurochem 81: 832–841.
57. Oliveira RF, Terrin A, Di Benedetto G, Cannon RC, Koh W, et al. (2010) The
role of type 4 phosphodiesterases in generating microdomains of cAMP: large
scale stochastic simulations. PLoS One 5: e11725.
58. Swaminathan R, Hoang CP, Verkman AS (1997) Photobleaching recovery and
anisotropy decay of green fluorescent protein GFP-S65T in solution and cells:
cytoplasmic viscosity probed by green fluorescent protein translational and
rotational diffusion. Biophys J 72: 1900–1907.
59. Scheuss V, Yasuda R, Sobczyk A, Svoboda K (2006) Nonlinear [Ca2+]
signaling in dendrites and spines caused by activity-dependent depression of
Ca2+ extrusion. J Neurosci 26: 8183–8194.
60. Lee GM, Zhang F, Ishihara A, McNeil CL, Jacobson KA (1993) Unconfined
lateral diffusion and an estimate of pericellular matrix viscosity revealed by
measuring the mobility of gold-tagged lipids. J Cell Biol 120: 25–35.
61. Balijepalli RC, Foell JD, Hall DD, Hell JW, Kamp TJ (2006) Localization of
cardiac L-type Ca(2+) channels to a caveolar macromolecular signaling
complex is required for beta(2)-adrenergic regulation. Proc Natl Acad Sci U S A
103: 7500–7505.
62. Borgdorff AJ, Choquet D (2002) Regulation of AMPA receptor lateral
movements. Nature 417: 649–653.
63. Harris KM, Stevens JK (1989) Dendritic spines of CA1 pryramidal cells in the
rat hippocampus: serial electron microscopy with reference to their biophysical
characteristics. J Neurosci 9: 2982–2997.
64. Isaacson SA (2009) The Reaction-Diffusion Master Equation as an Asymptotic
Approximation of Diffusion to a Small Target. SIAM J Appl Math 70: 77.
65. Sunsay C, Rebec GV (2008) Real-time dopamine efflux in the nucleus
accumbens core during Pavlovian conditioning. Behav Neurosci 122: 358–367.
66. Venton BJ, Zhang H, Garris PA, Phillips PE, Sulzer D, et al. (2003) Real-time
decoding of dopamine concentration changes in the caudate-putamen during
tonic and phasic firing. J Neurochem 87: 1284–1295.
67. Bhalla US (2004) Signaling in small subcellular volumes. II. Stochastic and
diffusion effects on synaptic network properties. Biophys J 87: 745–753.
68. Gillespie DT (2001) Approximating accelerated stochastic simulation of
chemically reacting systems. J Chem Phys 115: 1716–1733.
69. Blackwell KT (2006) An efficient stochastic diffusion algorithm for modeling
second messengers in dendrites and spines. J Neurosci Methods 157: 142–153.
70. Koh W, Blackwell KT (2011) An accelerated algorithm for discrete stochastic
simulation of reaction-diffusion systems using gradient-based diffusion and tauleaping.
J Chem Phys 134: 154103.
71. Hattne J, Fange D, Elf J (2005) Stochastic reaction-diffusion simulation with
MesoRD. Bioinformatics 21: 2923–2924.
72. Weisenhaus M, Allen ML, Yang L, Lu Y, Nichols CB, et al. (2010) Mutations
in AKAP5 disrupt dendritic signaling complexes and lead to electrophysiological
and behavioral phenotypes in mice. PLoS One 5: e10325.
73. Bauman AL, Soughayer J, Nguyen BT, Willoughby D, Carnegie GK, et al.
(2006) Dynamic regulation of cAMP synthesis through anchored PKA-adenylyl
cyclase V/VI complexes. Mol Cell 23: 925–931.
74. Nishi A, Bibb JA, Snyder GL, Higashi H, Nairn AC, et al. (2000) Amplification
of dopaminergic signaling by a positive feedback loop. Proc Natl Acad Sci U S A
97: 12840–12845.
75. Snyder GL, Galdi S, Fienberg AA, Allen P, Nairn AC, et al. (2003) Regulation
of AMPA receptor dephosphorylation by glutamate receptor agonists.
Neuropharmacology 45: 703–713.
76. Halpain S, Girault JA, Greengard P (1990) Activation of NMDA receptors
induces dephosphorylation of DARPP-32 in rat striatal slices. Nature 343:
369–372.
77. Huang Q, Zhou D, Chase K, Gusella JF, Aronin N, et al. (1992)
Immunohistochemical localization of the D1 dopamine receptor in rat brain
reveals its axonal transport, pre- and postsynaptic localization, and prevalence
in the basal ganglia, limbic system, and thalamic reticular nucleus. Proc Natl
Acad Sci U S A 89: 11988–11992.
78. Caille I, Dumartin B, Bloch B (1996) Ultrastructural localization of D1
dopamine receptor immunoreactivity in rat striatonigral neurons and its
relation with dopaminergic innervation. Brain Res 730: 17–31.
79. Colledge M, Dean RA, Scott GK, Langeberg LK, Huganir RL, et al. (2000)
Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex.
Neuron 27: 107–119.
80. Swayze RD, Lise MF, Levinson JN, Phillips A, El-Husseini A (2004)
Modulation of dopamine mediated phosphorylation of AMPA receptors by
PSD-95 and AKAP79/150. Neuropharmacology 47: 764–778.
81. Zhong H, Sia GM, Sato TR, Gray NW, Mao T, et al. (2009) Subcellular
dynamics of type II PKA in neurons. Neuron 62: 363–374.
82. Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from
ultrastructural and imaging studies. Nat Rev Neurosci 5: 24–34.
83. Garcia BG, Neely MD, Deutch AY (2010) Cortical regulation of striatal
medium spiny neuron dendritic remodeling in parkinsonism: modulation of
glutamate release reverses dopamine depletion-induced dendritic spine loss.
Cereb Cortex 20: 2423–2432.
84. Noguchi J, Matsuzaki M, Ellis-Davies GC, Kasai H (2005) Spine-neck
geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites.
Neuron 46: 609–622.
85. Grunditz A, Holbro N, Tian L, Zuo Y, Oertner TG (2008) Spine neck
plasticity controls postsynaptic calcium signals through electrical compartmentalization.
J Neurosci 28: 13457–13466.
86. Wilson CJ, Groves PM, Kitai ST, Linder JC (1983) Three-dimensional
structure of dendritic spines in the rat neostriatum. J Neurosci 3: 383–388.
87. Charpier S, Deniau JM (1997) In vivo activity-dependent plasticity at corticostriatal
connections: evidence for physiological long-term potentiation. Proc
Natl Acad Sci U S A 94: 7036–7040.
88. Fino E, Paille V, Cui Y, Morera-Herreras T, Deniau JM, et al. (2010) Distinct
coincidence detectors govern the corticostriatal spike timing-dependent
plasticity. J Physiol 588: 3045–3062.
89. Picconi B, Gardoni F, Centonze D, Mauceri D, Cenci MA, et al. (2004)
Abnormal Ca2+-calmodulin-dependent protein kinase II function mediates
synaptic and motor deficits in experimental parkinsonism. J Neurosci 24:
5283–5291.
90. Valjent E, Bertran-Gonzalez J, Aubier B, Greengard P, Herve D, et al. (2010)
Mechanisms of locomotor sensitization to drugs of abuse in a two-injection
protocol. Neuropsychopharmacology 35: 401–415.
91. Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal
integration system subserving synaptic plasticity and memory. J Neurochem 76:
1–10.
92. Arbuthnott GW, Wickens J (2007) Space, time and dopamine. Trends Neurosci
30: 62–69.
93. Moss J, Bolam JP (2008) A dopaminergic axon lattice in the striatum and its
relationship with cortical and thalamic terminals. J Neurosci 28: 11221–11230.
94. Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD (2010) Influence of phasic
and tonic dopamine release on receptor activation. J Neurosci 30:
14273–14283.
95. Rice ME, Cragg SJ (2008) Dopamine spillover after quantal release: rethinking
dopamine transmission in the nigrostriatal pathway. Brain Res Rev 58:
303–313.
96. Tostevin F, ten Wolde PR, Howard M (2007) Fundamental limits to position
determination by concentration gradients. PLoS Comput Biol 3: e78.
97. Wagner JJ, Keizer J (1994) Effects of rapid buffers on Ca2+ diffusion and Ca2+
oscillations. Biophys J 67: 447–456.
98. Centonze D, Grande C, Saulle E, Martin AB, Gubellini P, et al. (2003) Distinct
roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic
plasticity. J Neurosci 23: 8506–8512.
99. Spencer JP, Murphy KP (2002) Activation of cyclic AMP-dependent protein
kinase is required for long-term enhancement at corticostriatal synapses in rats.
Neurosci Lett 329: 217–221.
100. Fuller MD, Emrick MA, Sadilek M, Scheuer T, Catterall WA (2010) Molecular
mechanism of calcium channel regulation in the fight-or-flight response. Sci
Signal 3: ra70.
101. Constantinescu A, Wu M, Asher O, Diamond I (2004) cAMP-dependent
protein kinase type I regulates ethanol-induced cAMP response elementmediated
gene expression via activation of CREB-binding protein and
inhibition of MAPK. J Biol Chem 279: 43321–43329.
102. Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, et al. (2002)
Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum
and facilitates striatal-mediated learning and memory. Neuron 34: 807–820.
103. Bertran-Gonzalez J, Hakansson K, Borgkvist A, Irinopoulou T, Brami-
Cherrier K, et al. (2009) Histone H3 phosphorylation is under the opposite
tonic control of dopamine D2 and adenosine A2A receptors in striatopallidal
neurons. Neuropsychopharmacology 34: 1710–1720.
104. Aye TT, Scholten A, Taouatas N, Varro A, Van Veen TA, et al. (2010)
Proteome-wide protein concentrations in the human heart. Mol Biosyst 6:
1917–1927.
105. Philibin SD, Hernandez A, Self DW, Bibb JA (2011) Striatal signal
transduction and drug addiction. Front Neuroanat 5: 60.
106. Neves SR, Tsokas P, Sarkar A, Grace EA, Rangamani P, et al. (2008) Cell
shape and negative links in regulatory motifs together control spatial
information flow in signaling networks. Cell 133: 666–680.
107. Paulucci-Holthauzen AA, Vergara LA, Bellot LJ, Canton D, Scott JD, et al.
(2009) Spatial distribution of protein kinase A activity during cell migration is
mediated by A-kinase anchoring protein AKAP Lbc. J Biol Chem 284:
5956–5967.
108. McAvoy T, Zhou MM, Greengard P, Nairn AC (2009) Phosphorylation of
Rap1GAP, a striatally enriched protein, by protein kinase A controls Rap1
activity and dendritic spine morphology. Proc Natl Acad Sci U S A 106:
3531–3536.
109. Janssens V, Jordens J, Stevens I, Van Hoof C, Martens E, et al. (2003)
Identification and functional analysis of two Ca2+-binding EF-hand motifs in
the B0/PR72 subunit of protein phosphatase 2A. J Biol Chem 278:
10697–10706.
110. Crittenden JR, Cantuti-Castelvetri I, Saka E, Keller-McGandy CE,
Hernandez LF, et al. (2009) Dysregulation of CalDAG-GEFI and CalDAGGEFII
predicts the severity of motor side-effects induced by anti-parkinsonian
therapy. Proc Natl Acad Sci U S A 106: 2892–2896.
111. Li S, Tian X, Hartley DM, Feig LA (2006) Distinct roles for Ras-guanine
nucleotide-releasing factor 1 (Ras-GRF1) and Ras-GRF2 in the induction of
long-term potentiation and long-term depression. J Neurosci 26: 1721–1729.
112. Zigmond MJ, Castro SL, Keefe KA, Abercrombie ED, Sved AF (1998) Role of
excitatory amino acids in the regulation of dopamine synthesis and release in
the neostriatum. Amino Acids 14: 57–62.
113. Parker JG, Beutler LR, Palmiter RD (2011) The contribution of NMDA
receptor signaling in the corticobasal ganglia reward network to appetitive
Pavlovian learning. J Neurosci 31: 11362–11369.
114. Braithwaite SP, Paul S, Nairn AC, Lombroso PJ (2006) Synaptic plasticity: one
STEP at a time. Trends Neurosci 29: 452–458.
115. Mullasseril P, Dosemeci A, Lisman JE, Griffith LC (2007) A structural
mechanism for maintaining the ‘on-state’ of the CaMKII memory switch in the
post-synaptic density. J Neurochem 103: 357–364.
116. Kotera J, Sasaki T, Kobayashi T, Fujishige K, Yamashita Y, et al. (2004)
Subcellular localization of cyclic nucleotide phosphodiesterase type 10A
variants, and alteration of the localization by cAMP-dependent protein
kinase-dependent phosphorylation. J Biol Chem 279: 4366–4375.
117. Oliveria SF, Dell’Acqua ML, Sather WA (2007) AKAP79/150 anchoring of
calcineurin controls neuronal L-type Ca2+ channel activity and nuclear
signaling. Neuron 55: 261–275.
118. Dupont G, Goldbeter A (1998) CaM kinase II as frequency decoder of Ca2+
oscillations. BioEssays 20: 607–610.
119. Bradshaw JM, Kubota Y, Meyer T, Schulman H (2003) An ultrasensitive
Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch
facilitates specificity in postsynaptic calcium signaling. Proc Natl Acad Sci U S A
100: 10512–10517.
120. Hayer A, Bhalla US (2005) Molecular switches at the synapse emerge from
receptor and kinase traffic. PLoS Comput Biol 1: 137–154.
|